
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

A/35275 
THESIS 

A FORMAL APPROACH TO 
HAZARD DECOMPOSITION 

IN 
SOFTWARE FAULT TREE ANALYSIS 

by 

Donald Michael Needham 

June, 1990 

Thesis Advisor: Timothy Shimeall 

Approved for public release; distribution is unlimited. 

20100915195 T247296 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE 
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS 

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT 
Approved for public release; 
distribution is unlimited 

2b. DECLA35IFICATION/DOWNGRADING SCHEDULE 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 

6a, NAME OF PERFORM!.., 
Computer Technology 

0B6ANJZATI0N 
/ Curriculum 

6b. OFFICE SYMBOL 
(if applicable) 

37 

7a. NAME OF MONITORING ORGANIZATION 
Naval Postgraduate School 

PIG 

Naval Postgraduate School 
6c. ADDRESS (City. State, and ZIP Code) 

Monterey, CA 93943-5000 

7b. ADDRESS (City, State, and ZIP Code) 

Monterey CA 93943-5000 

srm OF FUNDING/SPONSORING 
NIZATION 

6b. OFFICE SYMBOL 
(if applicable) 

5 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBEH 

it>. SOURCE OF FUNDING NUMBERS" 6c. ADDRESS (City, State, and ZIP Code) 
PROGRAM 
ELEMENT NO. 

PROJECT 
NO. 

TASK 
NO. 

WORK UNIT 
ACCESSION N< 

11. TITLE (Include Security Classification) 
A FORMAL APPROACH TO HAZARD DECOMPOSITION IN SOFTWARE FAULT TREE ANALYSIS(U) 

mmmfflu. 
13a TYPE, OFREPORT 
Master s Thesis 

i&. TIME COVERED 
FROM TO 

15. PAGE COUNT 
75 

14. DATE OF REPORT (Year, Month, Day) 
June 1990 

16. SUPPLEMENTARY NOTATION 
The views expressed in this thesis are those of the author and do not reflect the official policy or position of tl 
Department of Defense or the US Government 

17 COSATI CODES 

FIELD GROUP SUB-GROUP 

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 
Fault Tree Analysis, Software Safety, Real-time software, Control softwan 
Formal Models, Life-critical software, Safety Assessment 

19. ABSTRACT (Continue on reverse if necessary and identify by block number) 
As digital control systems are used in life-critical applications, assessment of the safety of these control system 
becomes increasingly important. One means of formally performing this assessment is through fault tree analysi: 
Software Fault Tree Analysis (SFTA) starts with a system-level hazard that must be decomposed in a largely-humar 
intensive manner until specific module of the software system are indicated. These modules can then be formall 
analyzed using statement templates. 

The focus of this thesis is to approach the decomposition of a system-level hazard from a formalized standpoin 
Decomposition primarily proceeds along two distinct but interdependent dimensions, specificity of event an 

I subsystem size. The Specificity-of-Event dimension breaks abstract or combined events into the specific syster 
events that must be analyzed by the fault tree. The Subsystem-Size dimension deals with the scope of the hazard, an 
itemizes the subsystems where localized events may lead to the hazard. Decomposition templates are developed i 
this thesis to provide a framework for decomposing a system-level hazard to the point at which line-by-line cod 
analysis can be conducted with the existing statement templates. These templates serve as guides for conducting th 
decomposition, and ensure that as many as possible of all the applicable decomposition aspects are evaluated. 
26. DISTRIBUTION/AVAILABILITV OF ABSTRACT  
[J UNCLASSIFIED/UNLIMITED    fj SAME AS RPT.     Q DTIC USERS 

K ABSTRACT SECURITY CLASSIFICATION 
UNCLASSIFIED 

22aJJAME,0F RP$P6NSIBIE INDIVIDUAL 
Timothy J. Shimeall SF jm 22b. TELEP HONE J/nc/ude Area Code) 

(408) 646-2509 m( 

1   DO FORM 1473, 80 MAR 83 APR edition may be used until exhausted 
All other editions are obsolete 

SECURITY CLASSIFICATION OF THIS PAGE 

UNCLASSIFIED 



Approved for public release; distribution is unlimited. 

A Formal Approach to 

Hazard Decomposition 

in 

Software Fault Tree Analysis 

by 

Donald Michael Needham 

Lieutenant, United States Navy 

B.S., United States Naval Academy, 1983 

Submitted in partial fulfillment 

of the requirements for the degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

from the 

NAVAL POSTGRADUATE SCHOOL 

June 1990 

Author: 

Approved by: 

^izjb/AJUL/IM*' 
Donald Michael Needham 

Timothy Shimeall, Thesis Advisor 

a^. 

LCDR Leigh Bradbury, Second Reader 

MU 
Robert B. McGhee, Chairman 

Department of Computer Science 

n 



ABSTRACT 

As digital control systems are used in life-critical applications, assessment of the 

safety of these control systems becomes increasingly important. One means of formally 

performing this assessment is through fault tree analysis. Software Fault Tree Analysis 

(SFTA) starts with a system-level hazard that must be decomposed in a largely-human- 

intensive manner until specific modules of the software system are indicated. These 

modules can then be formally analyzed using statement templates. 

The focus of this thesis is to approach the decomposition of a system-level 

hazard from a formalized standpoint. Decomposition primarily proceeds along two 

distinct but interdependent dimensions, specificity of event and subsystem size. The 

Specificity-of-Event dimension breaks abstract or combined events into the specific 

system events that must be analyzed by the fault tree. The Subsystem-Size dimension 

deals with the scope of the hazard, and itemizes the subsystems where localized events 

may lead to the hazard. Decomposition templates are developed in this thesis to 

provide a framework for decomposing a system-level hazard to the point at which line- 

by-line code analysis can be conducted with existing statement templates. These 

templates serve as guides for conducting the decomposition, and ensure that as many as 

possible of all the applicable decomposition aspects are evaluated. 
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I.   INTRODUCTION 

A.     BACKGROUND 

A fault tree is a graphical representation of an analysis of a physical system. 

This analysis shows whether a combination of one or more contributing causes can 

result in the occurrence of a specific undesired event. The starting point for the 

construction of a fault tree is the specification of an undesired event. Fault tree 

analysis has been applied to both the hardware and software of systems as a means of 

proving an undesired event. The principles that are used to analyze software and 

hardware via fault trees are sufficiently different to consider hardware and software 

fault tree analysis as two separate processes. 

1.     Hardware Fault Tree Analysis 

Fault tree analysis was first applied to hardware systems, and made 

extensive use of hardware component failure rates. With hardware, the probability of a 

specific piece of hardware failing due to wear can be accurately determined. Either the 

analysis of historical data or direct experimentation can be used to assign a probability 

of failure to virtually any piece of hardware. Logic theory in combination with 

probability of failure data forms the mathematical basis for fault tree analysis. 

a.     Logical Relationship Between Hardware Events 

The symbols used to build the fault trees presented throughout this 

thesis are shown in Figure 1. These symbols are a subset of the symbols presented by 

Hammer [Ref. l:pp. 227-229] that are commonly used in both hardware and software 

fault tree analysis. Bagchi [Ref. 2:p. 4486] shows how two basic logic properties, OR 

and AND can be used to relate the probabilities of independent events. Consider, for 

example, the following two equations where A, B, C are independent events and P(A), 



CD 

The RECTANGLE indicates an event to be 
analyzed further 

The DIAMOND is used for non-pnmai events 
not developed further for lack of information 
or insufficient consequences 

The OVAL is used to indicate a condition 

The AND gate indicates that all input events 
are required in order to cause the output 
event 

The OR gate indicates that one or more of 
the input events are required in order to 
cause the output event 

The NOT gate indicates that the output event 
is the logical negation of the input event 

Figure 1.   Relevant Fault Tree Symbols 

P(B), P(C) are equal to the probability of the occurrence of the events A, B, C 

respectively. For the purposes of demonstrating the logical AND and OR properties, 

let Equation (1) be, "if C=A+B then P(C)=P(A)+P(B)-P(AAB)", and let Equation (2) be, 

"if C=A*B then P(C)=P(A)*P(B)M. In both Equation (1) and Equation (2), P(X) is the 

probability of independent event X occurring. Equation (1) can be reduced to 

P(C)=P(A)+P(B), since the purpose of subtracting the probability of the intersection of 

two events is to remove the redundancy involved when two OR'd events occur 

simultaneously. With respect to fault tree analysis, this subtraction is not strictly 

necessary. If two OR'd events occur simultaneously, the resultant event holds just as if 

either one of the OR'd events had occurred separately, and in many systems the 

probability of two simultaneous component failures is sufficiently low as to be 

negligible. 



Equations (1) and (2) form the basic foundation of the graphical 

depiction of a fault tree, although any logical relation (XOR, NAND, NOR, etc.) can 

be used as required to correcdy represent the system. Bagchi represents the logical OR 

of Equation (1) and the logical AND of Equation (2) graphically in Figure 2. 

Event C 
P|C) 

A 
1                 1 

Event A 
P(A) 

Event B 
P(B) 

Event C 
P(C) 

Q 
1 1 

II 
Event A 

P(AJ 
Event B 

P(B] 

Figure 2.   Logical OR and Logical AND 

The OR gate of Figure 2 shows the resultant fault tree from a system 

that has two components in series. A failure causing either event A or event B will 

result in the event C. The AND gate of Figure 2 shows the fault tree from a system 

that has two parallel events. As indicated by the AND gate, both events A and B must 

occur in order for event C to result. [Ref. 2:p. 4486] In short, fault tree analysis can 

be used to identify combinations of events (hardware failure, design flaws) that have 

the potential of causing the occurrence of the specified undesired event. 

b.     Orders of Fault Events 

An important aspect of the use of fault tree analysis is the 

decomposition of an undesired event into sub-events. These sub-events must be further 

decomposed until system components or actions are identified.   If these system events 



can be proven to be incapable of occurring, the system is proven incapable of 

generating the undesired event. 

Fussell developed a methodology called the Synthetic Tree Model 

(STM) [Ref. 3:p. 425] that distinguishes between four orders of fault events to guide in 

the decomposition of an undesired event. The orders represent various degrees of 

abstraction from the actual system components. The lowest order event, first order, is 

the most abstract. The undesired event that the fault tree is attempting to prove or 

disprove is the first order event that serves as the starting point or "root" of the 

analysis tree. 

Consider as an example the simple electrical circuit in Figure 3, similar 

to the circuit presented by Salem [Ref. 4:p. 54] in his work on fault tree construction. 

For the purpose of presenting Fussell's orders of fault events, this example circuit is 

Swiicn 

Power 
Supply 

Figure 3.   Simple Electrical Circuit 

composed of a light bulb, a power supply and a switch for turning the light on and off. 

The undesired event that might be used as a first order event could be the event "light 

not on".     With  Fussell's  methodology,  the  fault tree is constructed by  manually 



decomposing the first order event into higher order (less abstract) events. The 

undesired event "light not on" could be broken down into the less abstract events "no 

power to light bulb" or "light bulb broken". 

Second order fault events are conditions that effect a grouping of 

components that if failed would result in the occurrence of the first order event. A 

second order event for our example circuit could be "no power in group A", where 

group A consists of all components effected by this second order event. In our 

example, group A would be comprised of the power supply, light bulb and light switch. 

These components are grouped with respect to the serial nature of electronic circuits, in 

that the failure of any one component would necessarily result in the apparent failure of 

all the other components in the group. 

A third order event involves a fully functional component that merely 

acts failed due to a failure in another part of the system. The "no power to light bulb" 

event decomposed from the original undesired event is an example of a third order 

event. The light bulb will act failed (not light up) when in fact the light bulb is 

functional but has no power coming into it. To develop this third order event, STM 

requires a search for all second order groups in which the light bulb appears. The "no 

power to light bulb" event requires "no power" in each of these second order groups 

involving light bulbs. In other words, these groups are AND'd together to yield the 

third order event "no power in light bulb". Thus, a third order event is comprised of a 

combination of applicable second order events. 

The final level in FusselPs methodology is the fourth order event. A 

fourth order event involves a component that acts failed due to the input that the 

component receives. The light switch being in the off position would be an example 

of an input that causes the light bulb to act as though it had failed. 



The development of Fussell's methodology was based on electronic 

circuit principles. Second order events make use of the serial path of an electrical 

current. This reliance on the serial nature of components in an electrical system is a 

critical aspect of Fussell's STM methodology. It is this serial nature that requires the 

grouping of all the components that will also fail if any component along the electrical 

path fails. This serial grouping forms the basis for linking a third order event by an 

AND of a group of second order events. This serial grouping allows Fussell's 

methodology to require that all groups containing a component failure that would yield 

the third order event be included in the AND. 

Fussell acknowledges that the fault trees constructed using his Synthetic 

Tree Model are quite lengthy. The length of his trees is attributable to the method by 

which Fussell's methodology groups second order events. Second order events require 

the grouping of all components serially connected to a component whose failure would 

result in the second order event. This lengthens the tree by adding on components that 

a fault tree developed using Fussell's methodology must check. A tree being developed 

by a method other than Fussell's might not require this type of grouping, and might 

therefore have less branches to check. There is, however, an advantage attributable to 

the length of Fussell's trees. Any number of fault trees constructed independently for 

the same system and main failure event using Fussell's methodology will result in 

identical fault trees [Ref. 3:p 432]. This indicates a level of reliability in Fussell's 

methodology, and suggests the possibility that part or all of the fault tree construction 

may be automated. 

2.     Software Fault Tree Analysis 

Leveson and Harvey [Ref. 5:p. 570] describe an analysis technique that 

makes use of the basic principles of fault tree analysis, but applies them to the analysis 

of the software of a system rather than to a system's hardware components.   Since the 



basic notion of determining what sequence of events are capable of producing the 

undesired event is the same for the analysis of both hardware and software, a software 

tree can be linked together with a hardware tree at the appropriate interface. This 

allows the analysis of an undesired event to span over the entire hardware/software 

system. This linkage ability strengthens software fault tree analysis (SFTA) by 

allowing the effects of a hardware failure on the software system to be analyzed. 

The value of being able to link together both the hardware and the software 

of a system when conducting software fault tree analysis is illustrated by an example of 

a hazard resulting from missile launch control software being tested for the F/A-18 

aircraft [Ref. 6:p. 3]. The computer system was being used to control the launch of a 

wing mounted missile. The computer system was to fire the missile, open the wing 

station clamp to release the missile, and then close the clamp. The hazard occurred 

because the software closed the clamp before the missile had built up enough thrust to 

leave the wing. This resulted in the aircraft having 3000 pounds of extra thrust 

attached to the wing of the aircraft. The ability of SFTA to be linked in with a 

hardware fault tree presents the opportunity to fully analysis these interrelated errors. 

There are differences in the approach that software fault tree analysis takes 

in the analysis of a software system that sets this method apart from the more 

traditional hardware fault tree analysis methods. A hardware fault tree relies on the 

probabilities of failure for various hardware components. These failure probabilities are 

either known, or can be accurately predicted. Hardware fault tree analysis makes use 

of these probabilities of failure to construct a tree that will show which components are 

critical to the system. This tree construction based on failure probabilities is possible 

since hardware components are assumed to fail independently at a determinable rate. 

Software fault tree analysis cannot proceed in the same manner since no such 

assumption about failure independence can be made about software component failures. 



[Ref. 5:p. 576]   Furthermore, since software faults are design faults, determination of a 

software failure rate is an unsolved problem [Ref. 7:p. 104]. 

The approach taken by Leveson and Harvey's software fault tree analysis is 

to use the fault tree to show that the logic of the software design will not produce or 

contribute to actions that lead to system failures. This analysis can take place at any 

desired level of abstraction, including code level analysis. If a failure is shown to be 

possible, the structure of the resultant tree determines any environmental conditions that 

could lead to the software causing a safety failure. [Ref. 5:p. 576] Software fault tree 

analysis starts with the assumption that the software system has gotten itself into a state 

in which the undesired event has occurred. With this assumption, the fault tree is 

developed backwards starting with the undesired event and examines all the possible 

paths that lead to the undesired event. Typical usage starts with the program 

statements as written in the implementation language. Each statement is assumed to 

have executed in a manner such that the undesired event occurs. The development 

proceeds by looking at each statement and determining how the assumed statement 

execution was allowed to occur. 

a.     Statement Templates 

Cha, Leveson and Shimeall [Ref. 8:pp. 380-383] present statement 

templates (hence forth referred to as "Cha's Templates" for convenience) that are used 

to analyze each of the possible Ada statements. The template for the decision 

statement shows all the pathways that the software can take when a decision statement 

is executed. The template for non-decision statements can be used to analyze the 

various possible results from each statement, and can show whether the execution of 

the assignment statement could result in another link in the chain leading back to the 

undesired event. Figure 4 is an example of a template developed for an Ada 

assignment statement [Ref. 8:p. 380]. 



1 1 
Change in 

Value 

Causes Failure 

Exception 

Causes 

Failure 

Operand 

Evaluation 

Causes Failure 

Figure 4.   Ada Assignment Statement Template 

Cha's templates were designed using statement semantics from the Ada 

language, and by analyzing the causes of frequently made programming errors. The 

templates suggest possible branches to analyze specific statements. This aids the 

analyst in the consideration of all the possible results of a statement. The authors 

contend that templates could be constructed to analyze program statements written in 

any language, and allude that the templates might be tailor made to try to uncover 

specific errors. This tailoring might make the search for critical, system specific events 

more effective. 

b.     Contradiction Within Fault Trees 

With or without the guidance of statement templates, every single 

safety-critical path that the software may take during the course of execution must be 

analyzed via a branch in the fault tree. Ideally, as paths are analyzed, contradictions 

will occur. A contradiction with regard to software fault tree analysis is when an event 

that could cause the undesired event is prevented by the software. Since the 

contradicted event cannot occur, that particular analysis branch need no longer be 

pursued. 



A path that terminates without a contradiction is a path via which the 

undesired event can occur, and actually proves that the undesired event could possibly 

be generated by the system software. Since the exact path that allows the undesired 

event is now known, it is a simple matter to place run-time checks in the code to halt 

the pathway to the undesired event. 

Even with the ability to halt tree development after a contradiction, any 

given fault tree may still be lengthy if carried out to full term. Leveson and Harvey 

[Ref. 4:p. 576] point out that it is not necessary to expand the entire tree down until 

every path terminates in either a contradiction or the system environment. At any level 

of abstraction, the analysis may be halted and run-time checks inserted into the code to 

trap a developing unsafe state. 

B.      SAFETY CRITICAL CONSIDERATIONS 

The prospect of testing a system using fault tree analysis may seem tempting 

since this analysis method effectively proves whether or not a system will allow a 

specific event to occur. However, testing deals primarily with determining whether or 

not a system will function as it was designed to. The purpose of testing a system is to 

attempt to show that the system does not meet its specification [Ref. 9:p. 3]. 

Leveson and Harvey [Ref. 5:p. 571] point out that software fault tree analysis is 

focused on proving that the system is incapable of producing a specific event from a 

software standpoint. This is much different from testing to see if a system will provide 

correct output for all of a potentially infinite set of states that the system could be in 

during the course of execution. Focusing on proving that the system cannot produce a 

specific undesired event allows the analysis to take advantage of path termination when 

a contradiction occurs, which makes for shallower trees. Still, the set of what a 

software system is not supposed to do is the complement of what the system is 

10 



supposed to do, with the size of both sets potentially being very large. To attempt to 

use software fault tree analysis on the set of events that the system is not supposed to 

do would require an impossibly large number of fault trees to be developed. Since the 

development of a fault tree is generally not a trivial undertaking, the set of events to be 

analyzed must be reduced. The reduction of this set is where safety criticality comes 

in. 

The inclusion of safety criticality as a means of reducing the set of undesired 

events with which the software fault tree analysis must contend primarily relies on two 

underlying concepts. As Cha [Ref. 8:p. 377] points out, the first concept is that not all 

failures are of equal consequence, and the second concept is that the number of 

potentially serious failures is relatively small as compared to the overall set of 

undesired events. Reducing the set of undesired events by determining which events 

are critical to the safe operation of the software system allows SFTA to be focused on 

the smaller set of potentially high-cost or otherwise unacceptable errors. 

C.     PROBLEM STATEMENT 

The templates presented by Cha are useful in guiding the statement by statement 

decomposition of software fault trees. However, these templates are limited in 

application to line by line code analysis, and do not deal with undesired events not 

linked to single linear sequences of statements. With current software fault tree 

analysis techniques, no formal method exists for decomposing a system-level hazard to 

the point at which the Cha statement templates can be applied. System-level hazards 

are currently decomposed manually in what proves to be a largely human intensive 

manner. Decomposition of system-level hazards in this manner relies heavily on 

human insight and knowledge of the software system, and introduces human error in 

the form of oversight. 

11 



This thesis approaches the decomposition of a system-level hazard from a 

formalized standpoint The decomposition of the system-level hazard primarily 

proceeds along two distinct but interdependent dimensions, specificity of event and 

subsystem size. The hazard starts as a more general event that is assumed to occur 

somewhere within a large system or subsystem. The process of decomposition involves 

breaking the hazard into more specific events, or itemizing subsystems within which 

the hazard may be a consequence. Decomposing a hazard in one dimension often 

results in opening up further possibilities for decomposition along the other dimension. 

The Specificity-of-Event decomposition dimension deals with how specific the 

events and conditions associated with the hazard are. The goal of this decomposition 

dimension is to identify the particular events that are to be analyzed within the 

subsystems that comprise the system being examined. This decomposition works by 

itemizing each event that could cause the hazard in the current subsystem. For this 

itemization to be effective, the scope of the decomposition must constitute a complete 

enumeration of the ways in which the hazard could occur within the current subsystem. 

Although some of these itemized events will not be considered further, due to the 

contradictions that the events represent, all possible occurrences of the hazard are 

itemized for completeness. The sum of these itemized events represents in total the 

ways in which the hazard can occur within the scope of the current subsystem. 

The Subsystem-Size decomposition dimension deals with how large of a 

subsystem is being considered when determining how the hazard being analyzed can 

occur. This decomposition dimension moves the scope of the hazard from a more 

general system wide event, to an event that is more specific in terms of the scope of 

the subsystem that the event effects. This increase in the specificity of the event 

effectively works to identify the  specific  system events  that must be  targeted for 

12 



analysis by the statement templates.   Decomposing the hazard into various subsystems 

focuses the tree towards subsystems that play a role in the hazard being analyzed. 

D.     STRUCTURE OF THESIS 

Chapter II develops the design of templates that provide a framework for 

decomposing a system-level hazard to the point at which line by line code analysis can 

be conducted with existing statement templates. These templates serve as guides for 

conducting the decomposition, and ensure that as many as possible of all the applicable 

decomposition aspects are evaluated. 

Chapter III demonstrates the use of the decomposition templates through an 

example. The fault tree is developed starting with the decomposition of an undesired 

system-level event. Events are further decomposed using the templates developed in 

Chapter II indicating specific modules of the software system along with associated 

specific events and conditions. This decomposition process is continued until the point 

at which Cha's statement templates can be implemented. 

Chapter IV summarizes the work accomplished through the use of the 

decomposition templates, and the conclusions that were drawn through the development 

of this thesis. Areas of future work in the area of software event decomposition 

templates are indicated in this chapter. 
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H. DECOMPOSITION TEMPLATES 

A.     DECOMPOSITION OF A HAZARD 

The hazard at the root of the software fault tree is decomposed in a manner such 

that statement templates may be used to analyze the hazard at the statement level of 

each applicable subsystem. The hazard is decomposed in two different abstract 

dimensions. As depicted by Figure 5, these decomposition dimensions are the 

specificity of the event being considered, and the size of the subsystem being 

considered. 

Specific implement 
Statement 

Specificity 
Of Event 

Templates 

General Ha: ard 

Large 5mai 

SuDsystem Size 

Figure 5.   Decomposition Dimensions 

Figure 5 shows the hazard starting as a more general event that occurs 

somewhere in a large system or subsystem. The process of decomposition involves 

breaking the hazard into more specific events, or itemizing subsystems within which 

the hazard may be a consequence, or both. In both dimensions of the graph in Figure 

5, the path that the decomposition process takes is non-decreasing in nature.    For 
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example, the Specificity-of-Event dimension may be held constant so as to allow the 

other dimension, Subsystem-Size, to move more to the right as it is decomposed. 

However, the Specificity-of-Event dimension does not move towards a more general 

event to allow the Subsystem-Size dimension to move from a larger to a smaller 

subsystem size. A move such as this results in backtracking within the analysis tree. 

Although a backtracking move would be required when the analyst determines that a 

previous move was incorrect, backtracking effectively accomplishes nothing more than 

returning to a previous state so that the analysis can take an alternate avenue. 

B.     SOFTWARE SYSTEM REQUIREMENTS 

In order to illustrate each decomposition template as it is presented, a simple 

software program is used.   The following requirements for an imaginary traffic light 

control program for an automobile intersection was used by Cha, Leveson and Shimeall 

in demonstrating the use of software statement templates, and is repeated here : 

"A traffic light control system at an intersection consists of four (identical) 
sensors and a central controller. The sensors in each direction detect cars 
approaching the intersection. If the traffic light currently is not green, the sensor 
notifies the controller so that the light will be changed. A car is expected to stop 
and wait for a green light. If the light is green already, the car may pass the 
intersection without stopping. The controller accepts change requests from the 
four sensors and arbitrates the traffic light changes. Once the controller changes 
the light in one direction (east-west or south-north) to green, it maintains the 
green signal for five seconds so that other cars in the same direction may pass in 
the same direction without stopping. Before the green light in any direction 
becomes red, it should remain in yellow for one second so that any car present in 
the intersection may clear. The light then turns to red while the light in the 
opposite direction turns to green." [Ref. 8:p. 382] 

With the above requirements, the hazard analyzed to illustrate the decomposition 

templates is  "Two Cars  Simultaneously in  Intersection Traveling  in  Perpendicular 

Directions",   or   "Perpendicular  Cars"   for   short.      As   noted   by   Cha,   the   above 

requirements were designed to contain several failure modes.    Finding failure modes 

other than the one illustrated by Cha have no relevance to the importance of Cha's 
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work. Hazard decomposition as presented herein is intended to precede and 

complement Cha's work on statement templates. The application of statement templates 

completes the hazard decomposition presented in this thesis. 

C. SPECinCITY-OF-EVENT DECOMPOSITION DIMENSION 

The Specificity-of-Event decomposition deals with how specific the events and 

conditions associated with the hazard are. The goal of decomposing the hazard with 

regard to specificity is to identify the particular events that are to be analyzed within 

the subsystems that comprise the system being examined. This decomposition works 

by itemizing each event that could cause the hazard in the current subsystem. For this 

itemization to be effective, the scope of the decomposition must constitute a complete 

enumeration of the ways in which the hazard could occur within the current subsystem. 

Although some of these itemized events will not be considered further due to the 

contradictions that the events represent, all possible occurrences of the hazard are 

itemized for completeness. The sum of these itemized events represents in total the 

ways in which the hazard can occur within the scope of the current subsystem. 

D. SPECIFICITY-OF-EVENT DECOMPOSITION TEMPLATES 

Three basic logic relations, OR NOT and AND, are used to determine the 

relationship of the events itemized by the decomposition process. The following 

templates show the logical relationship that the decomposed event(s) and condition(s) 

have to the hazard. 

1.     OR Template 

The OR Template (Figure 6) is used to decompose a hazard that occurs 

because either one of two events (Event 1 or Event 2) occur. Both Event 1 and Event 

2 are capable of singularly causing the hazard to occur. Since either Event 1 or Event 

2 could cause the hazard, each event is given its own branch within the OR gate.   The 
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Hazard occurs Because 
Event 1 or Eveni 2 Occurs 

Event 1 Occurs 
Both Event 1 And 

Event 2 Occur Event 2 Occurs 

Figure 6.   OR Template 

center branch within the OR gate is reserved for the instance in which both Event 1 

and Event 2 occur simultaneously. Further decomposition on this center branch 

generally is halted immediately because in order for this branch to be taken during 

analysis, both events must occur. If both events occur, then the hazard will occur the 

same as if only one of the events had occurred. The analysis of the center branch may 

be a direct duplication of the analysis of the two separate events, and in that case it is 

not further pursued. Only if the center event suggests important and non-duplicative 

analysis directions is it explored. For example, if the two events leading to a hazard 

are not independent, the center branch could be used to explore their interdependency 

as a source of the undesired event. If the center branch is irrelevant, it is omitted from 

the analysis. 

An example of the decomposition of the hazard using a OR Template 

(Figure 7) in the traffic light control system is found in the requirements. The 

requirements state that before the green light in any direction becomes red, it should 
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Perpendicular Cars 
In Intersection 

No Pause in Yeiiow 
Wnen Lignt Commanded 

From Green to Red 

Soltware Cornmanos 
Perpmacuiar 
Lights Green 

Figure 7.   Example OR Template Use 

remain in yellow for one second so that any car presently in the intersection may clear. 

If the software fails to make each light pause in yellow for one second during the 

transition from green to red, a car could get caught in the intersection when the 

opposing traffic light turns green. One branch of the OR Template for the 

decomposition of Perpendicular Cars is the event "No Pause in Yellow When Light 

Commanded From Green to Red". Another branch considered here is the software 

system's command of the lights. If the software were to command perpendicular lights 

to be green at the same time, the Perpendicular Cars hazard could occur. This 

decomposition represents the second branch as "Software Commands Perpendicular 

Lights Green". 

2.     NOT Template 

The NOT Template (Figure 8) is used to decompose a hazard that occurs 

because an event or action fails to occur.   The logical NOT decomposes the hazard 
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such that it is not the case that the event does occur. This frees the analyst to consider 

the case in which the event does occur. As with a mathematical proof by 

contradiction, it may be more straightforward to show that there is a contradiction with 

assuming that an event does occur than it is to show that, for all cases, it is impossible 

for the event to occur within the system. An example of the use of a NOT Template 

(Figure 9) is the "No Pause in Yellow When Light Commanded From Green to Red" 

Branch of the example OR Template hazard decomposition appearing in Figure 7.   By 

H«nr4 Occurs Btcim* 
ACIKM Flilt ro 88 Dons 

Htnrrj Occurs Steam 
ACIiOB  IS DOM 

NO Ptist m -naiiow 
w»en lMil Commanded 

Frea Grttn is Rta 

Pause ia Tenow Waen 
lig«l Corairuridea 
Fro* Grt«n to B«o 

Figure 8.   NOT Template Figure 9.   Example NOT Template 

applying the NOT Template, the event "Light Pauses in Yellow When Light Goes 

From  Green   to  Red"   could  instead  be   analyzed  if  this  event  is  deemed  more 

straightforward to evaluate. 

3.     AND Templates 

A logical AND is represented with two different AND decomposition 

templates. The first AND Template (Figure 10) is used to decompose a hazard that 

occurs because  both of two separate events (Event   1  and Event 2) occur.     This 
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Hazard Occurs Because 
Both Eventl And Evenl2 Occur 

Evenll Occurs Event? Occurs 

Figure 10.   AND Template 

decomposition template breaks the hazard into two events, each of which is analyzed 

individually. If either of the events can be shown to be incapable of occurring, the 

analysis of both of the AND branches is stopped. 

An example of the use of the AND Template (Figure 11) is to further 

decompose the "Software Commands Perpendicular Lights Green" branch of the OR 

Template. To decompose this branch further, consideration must be given as to how 

the software could end up in a state in which perpendicular lights have been 

commanded green. One way for this event to occur is if the software properly 

commands a light green, while at the same time the perpendicular tight is stuck in a 

green state. 

The second AND (WHILE/WHEN) Template (Figure 12) is used to 

decompose a hazard that occurs because an event occurs while a specific condition is 

true. If the condition does not hold while the event occurs, then the hazard does not 

occur.   Thus, the event is dependant upon the condition associated to it by the AND 
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Software Commands 
Perpendicular Ltgnis 

Green 

n 
Software Commands 

One Light Green 
Perpendicular Lignt 

Stuck in Green Slate 

Figure 11.   Example AND Template Use 

gate.    All subsequent decompositions resulting from the event side of the AND gate 

carry with them the scope of the condition side. 

Hazard Occurs Because Event occurs 

While or When Condition is True 

0 
Event Occurs /^Conoition^ 

Figure 12.   AND (WHILE/WHEN) Template 
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An example of the use of the AND (WHILE/WHEN) Template (Figure 13) 

is to further decompose the "No Pause in Yellow When Light Commanded From Green 

NO Pause m Yellow wnen Ltqnt 
Commanded From Green to fled 

Light Does Not 
Pause in Yellow 

Q 
Light Commanded 

From Green To Red 

Figure 13.   Example AND (WHILE/WHEN) Template Use 

to Red" branch of the example OR Template hazard decomposition in Figure 7. This 

event is broken down into an event and a condition that must be true in order for the 

associated event to result in the occurrence of the hazard. The event is decomposed 

using an AND (WHILE/WHEN) Template into the event "Light Does Not Pause in 

Yellow" and the condition "Light Commanded From Green to Red". 

E.     HIGH-LEVEL TRAFFIC-LIGHT DESIGN 

For the purposes of demonstrating the subsystem decomposition templates, a 

simple high level design loosely fulfilling the requirements for Cha's stoplight system is 

represented in the High-Level Traffic-Light Design (Figure 14). This high-level design 

has a "controller" process which determines how the four lights should be set, and 
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sends commands for changing the lights to four identical "Set Signal" processes.   The 

four "Set Signal" processes in turn control the four traffic light devices. 

Clock Time Signals 

Cor Arrival Signal 
Command to Set Lights 

Car Arrives 

Sensor Hardware 
Traffic Signal 

Figure 14.   High-Level Traffic-Light Design 

When the "Controller" process determines a light should be changed from green 

to red, the "Controller" process is responsible for ensuring that the light pauses in 

yellow during the transition. Each "Set Signal" process controls one of the four 

physical traffic signals in the intersection, and sends green, yellow, and red indications 

to the traffic light as directed by the "Controller" process. The "Controller" process 

determines how the four lights should be set by accepting input both from a clock and 

from the four identical "Read Car Sensor" processes. Each "Read Car Sensor" process 

reads sensor hardware that indicates when a car has approached the intersection. The 

"Controller" process uses input from the clock device to ensure that the light has 

remained green in one direction long enough to allow a predetermined minimum 

number of cars through the intersection.     This  high-level design is by no means 
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complete, and is intended to be a tool for demonstration of the use of subsystem 

decomposition templates. 

F.      SUBSYSTEM-SIZE DECOMPOSITION DIMENSION 

The Subsystem-Size decomposition dimension deals with how large a subsystem 

is being considered when determining how the hazard being analyzed can occur. The 

size of the subsystem may start out comprising the entire software and hardware system 

in the beginning of the decomposition. This decomposition moves from a more general 

system wide event, to an event that is more specific in terms of the scope of the 

subsystem that the event effects. This increase in the specificity of the event 

effectively works to identify the specific system events that must be targeted for 

analysis by the statement templates. Decomposing the hazard into various subsystems 

focuses the tree towards subsystems that play a role in the hazard being analyzed. 

Along with indicating which subsystems should be investigated, the software fault 

tree must indicate any conditions or events that must be considered when analyzing the 

subsystem on a statement by statement basis. These conditions and events are 

indicated through the previously described AND (WHILE/WHEN) template (Figure 12). 

The focus of the templates presented below is to decompose the overall software 

system with the intent of identifying the subsystems that can contribute to the 

occurrence of the hazard.The decomposition of a system into its various subsystems 

relies on the communication links and interfaces with which the system will function. 

In order to demonstrate the use of subsystem decomposition templates, the high-level 

design for the traffic light system previously described is used to represent the 

communication between the processes of the subsystem. 
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G.     SUBSYSTEM-SIZE DECOMPOSITION TEMPLATES 

1.    Subsystem Template 

Subsystem decomposition templates are used to break out from the overall 

system the various systems and subsystems that must be considered in regard to the 

hazard. Three templates are used for the decomposition of subsystems, and are related 

via an OR gate as shown in the Subsystem Template (Figure 15). 

At the root of the Subsystem Template is the subsystem that is indicated by 

the hazard or event   The Process Template branch decomposes the subsystem based 

Subsystem 
To Be 

Decomposed 

Process 

Template 

Communication 

Template 

Access 

Template 

1 ( C I J ) 
Figure 15.  Subsystem Template 

upon the input-process-output of a subsystem. The Communication Template branch 

decomposes the subsystem based upon the communication between various processes 

within a subsystem. The Access Template branch decomposes the subsystem based 

upon the access that a subsystem may have to a device or database. 
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An example of the use of the Subsystem Template (Figure 16) is to 

decompose the event "No Pause in Yellow When Light Commanded From Green to 

Red" from the left branch of the example OR Template (Figure 7). At this point, the 

entire system is considered when determining which subsystems to decompose based 

upon this event Subsequent decompositions using the Subsystem Template would use 

the scope of the subsystem that is currently being evaluated as the root subsystem of 

the template. 

Decompose Entire System 
Based on Event 'No 

Pause m Yellow wnen ugm 
Commanaefl From Green to Rea' 

Controller 
Process 
Causes 

Above Event 

Processes That 
Communicate Witn 
Controller Process 
Cause Above Event 

Processes That 
Have Access To 

Traffic-Lignt 
Device Cause 
Above Event 

Figure 16.  Example Subsystem Template Use 

To evaluate the event "No Pause in Yellow When Light Commanded From 

Green to Red" for subsystem decomposition, the analyst must determine from the 

system design the processes that control the traffic light, the subsystem(s) that 

communicate with these controlling processes, and the processes that actually have 

access to the traffic light. The processes that can be decomposed from the system are 

determined by evaluating the High-Level Traffic-Light Design (Figure 14). 
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As shown in Figure 16, the "Controller" process is indicated in the left 

branch of the template because it is the process within the system that controls the 

traffic light by sending commands to set the traffic signal to the "Set Signal" process. 

The middle branch of Figure 16 indicates that all the processes that communicate with 

the "Controller" process must be considered by the decomposition. The right branch of 

Figure 16 indicates that all processes that actually have access to the traffic light should 

also be considered in this decomposition step. 

2.     Process Template 

The Process Template (Figure 17) is used to decompose the subsystem by 

evaluating the three basic areas of the subsystem. These three areas are distinguishable 

by their relation to the overall process contained within the subsystem. 

Process Indicated By Event X 

Input to Process Internal Process 

Individual Subprocess 
(i-N) Caused Event x 

Output of Process 

Subprocess Interaction 
(1-N) caused Event x 

Figure 17.   Process Template 
0/-j   Qflo.' .j 
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The first branch of the Process Template (Figure 17), Input To Process, 

decomposes the subsystem by considering the input to the subsystem from either a 

larger subsystem within which the current subsystem is contained, or input from the 

environment within which the subsystem operates. The input to the process within the 

subsystem is decomposed to evaluate whether or not input to the process can cause the 

hazard to occur. 

The second branch of the Process Template (Figure 17), Internal Process, 

deals with the overall process that the current subsystem performs. As shown by the 

Process Template, the overall process itself can be decomposed into subprocesses 1-N. 

The total number of subprocesses (N) is limited because of the safety critical nature of 

the system being analyzed. If N is excessively large, then the system is inherently 

unsafe because the safety critical processes cannot reliably be isolated. The Process 

Template is designed for use on systems with a relatively small number of safety 

critical subprocesses. These N subprocesses are considered in two ways, individually 

and in combination. 

Under the Individual Subprocess branch of the Process Template (Figure 

17), each subprocess is considered individually to determine if any one of the N 

subprocesses can by itself result in the occurrence of the hazard. Each subprocess is 

strictly evaluated in isolation, with no interaction allowed from any other subprocess. 

If a subprocess always requires interaction with other subprocesses, then the individual 

subprocess decomposition is stopped. A subprocess requiring interaction is evaluated 

under the Subprocess Interaction branch of the Process Template. 

The second way in which the Process Template (Figure 17) considers the N 

subprocesses that are decomposed via the Internal Process branch is through the 

evaluation of the interaction of one of the N subprocesses with another of the N 

subprocesses.  The decomposition of the process of a subsystem that takes advantage of 
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parallel processing must consider the different combinations of subsystems that are 

capable of processing in parallel. From this set of combinations, the software fault tree 

must consider whether any of the combinations are capable of interacting in a manner 

that would result in the occurrence of the hazard. 

The third branch of the Process Template (Figure 17), Output of Process, 

decomposes the subsystem by considering the output that is produced by the overall 

process that the current subsystem performs. The output from the process is evaluated 

to consider whether the output can cause the hazard to occur. 

An example of the use of the Process Template (Figure 18) is to decompose 

the "Controller" process of the high-level traffic light design. The decomposition starts 

with the analyst pursuing the "No Pause in Yellow When Light Commanded From 

Green to Red" event branch of the example OR Template (Figure 7). The analyst 

determines that the "Controller" process is a process that could be indicated by the 

occurrence of this event. 

Controller Process Indicated By Even! 
"No Pause in Yenow wnen light 
Commanded From Green to Red 

Internal Processes 
Within controller 
Cause Above Event 

Input From Head Car Sensor 
Process Causes Above Event 

Output to Set 
Signal Processes 

Causes Above Event 

Input From Clock: 
Causes Above Event 

Figure 18.   Example Process Template Use 
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The "Controller" process is decomposed into three areas as shown in Figure 

18. The first branch of the Process Template indicates that the internal processes 

within the "Controller" process should be analyzed. The second branch "Input to 

Process" indicates that the four "Read Car Sensor" processes and the "Clock" process 

should be analyzed since these processes provide input to the "Controller" process. 

The third branch indicates that the output from the "Controller" process to the four "Set 

Signal" processes should be analyzed to determine if the event in question could be a 

result of what is output by the "Controller" process. 

3.     Communication Template 

The Communication Template (Figure 19) is used to decompose a subsystem 

based upon the communication between the processes that make up the subsystem. 

Processes can communicate via a rendezvous (as in Ada), through shared memory, or 

through the exchange of data. 

Communication Between 
Processes Within Subsystem 

Communication via 
Rendezvous 

Communication via 
Shared Memory 

Communication via 
Exchange of Data 

Process template Process template 

Process A 
Changes Memory 

Process B Effected By 
Process As Memory Change 

Figure 19.   Communication Template 
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The communication that can occur through a Ada rendezvous is checked 

using the Rendezvous branch of the Communication Template to determine if the 

hazard can occur here. Processes that communicate through rendezvous are analyzed in 

a manner similar to the way in which processes communicating through the exchange 

of data are analyzed. The two processes that rendezvous in effect join to form one 

overall process. This combined overall process is then analyzed using the Process 

Template. 

For processes that communicate through shared memory, each process is 

analyzed under the Shared Memory Branch of the Communication Template with 

consideration given to changes to the shared memory that the first process can make. 

These changes may cause the second process to function in a manner such that the 

hazard occurs. As with the Process Template, the number of safety critical processes 

that communicate through shared memory must be small. If the number of safety 

critical processes communicating through shared memory is excessively large, then the 

system is inherently unsafe because the safety critical processes cannot reliably be 

isolated. 

Whether or not the hazard can occur by way of the exchange of data 

through output from one process and input to another process is considered through the 

use of Process Templates. In the Exchange of Data branch of the Communication 

Template (Figure 19), the two processes exchanging data are considered joined together 

to form a single combined process. This combination process is then evaluated under 

the Process Template. The data that is output from the first process is analyzed using 

the Output of Process branch, while the data that is exchanged as input is evaluated 

using the Input to Process branch. 

An example of the Communication Template (Figure 20) is limited by the 

simplicity of the example high-level traffic-light design.    At this level, neither the 
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Processes mat Communicate 
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Tnrougn Excnange or Data 
Cause Hazard 

Read Car Sensor 
Processes (4) 

Cause Hazard 
Clock Process 
Causes Hazard 

Set Signal 
Processes (4) 
Cause Hazard 

Figure 20.   Example Communication Template Use 

processes that communicate through rendezvous type operations, nor the processes that 

communicate through shared memory are known. The first and second branches of the 

Communication Template are therefore not pursued in the example. 

The third branch of the Communication Template is used to ensure that all 

the processes that communicate with the "Controller" process are considered when 

analyzing the "Controller" process with regard to the hazard. As indicated by Figure 

20, there are three distinct sets of processes that communicate with the "Controller" 

process through the exchange of data. These sets of processes are the four "Read Car 

Sensor" processes, the "Clock" process, and the four "Set Signal" processes. As shown 

by Figure 20, each of these distinct sets of processes must be analyzed for any role 

they might play in the "Controller" process causing the event, "No Pause in Yellow 

When Light Commanded From Green to Red". 
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4.    Access Template 

The Access Template (Figure 21) is used to decompose the subsystem by 

evaluating the access that the subsystem has to the control of a device or the 

maintenance of a database. 

Access Subsystem Has To 
Oevice/Database causes Hazaro 

Access to Device 
Causes Hazard 

Access to Database 
Causes Hazard 

Figure 21.  Access Template 

Using the Access to Device branch of the Access Template, a subsystem 

controlling a device is evaluated to determine if the subsystem can control the device in 

a manner such that the hazard can occur. As shown in the Access To Device Template 

(Figure 22), the analysis of a subsystem's access to a device consists of three distinct 

evaluation conditions. 

The first evaluation condition of the Access to Device Template is that the 

subsystem must have access to the device that causes the hazard. The second 

evaluation condition is that the subsystem must be capable of sending commands to the 

device, with the hazard occurring as a result of the device receiving these commands. 

The third evaluation condition is that the subsystem actually sends the hazard-causing 
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commands to the device. These evaluation conditions are AND'd together because in 

order for the subsystem to cause the hazard through its access to the device, all three 

of these conditions must be met. 

In a similar manner, the Access to Database branch of the Access Template 

(Figure 23) is used to determine if a subsystem maintaining a database can make 

Subsystem 
Accesses 

Device 

Access To Device 
Causes Hazard 

Q 
Subsystem Senas 

Command To 

Device 

Command From 
Subsystem To 
Device Causes 

Hazard 

Figure 22.   Access To Device Template 

entries or updates to the database that can result in a process accessing the database 

values and utilizing these values in such a manner that the hazard occurs. As shown in 

the Access To Database Template, the analysis of a subsystem's access to a database is 

evaluated using three distinct conditions. 

The first evaluation condition is that the subsystem must have write access 

to the database from which values that cause the hazard are referenced. 

The second evaluation condition is that the subsystem must be capable of 

writing values to the database, with the hazard occurring as a result of a process 

referencing these values.   Here, the removal of a value from the database and having 
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Access To DataBase 
Causes Hazard 
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Values To 
Database 
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Database By 
Subsystem 

Causes Hazard 

Figure 23.   Access To Database Template 

the hazard occur as a result of this removal is considered as an overwrite of an original 

valid value. 

The third evaluation condition is that the subsystem actually writes the 

hazard-causing value to the database. These evaluation conditions are AND'd together 

because in order for the subsystem to cause the hazard through its access to the 

database, all three of these conditions must be met. 

An example of the use of the Access To Device branch of the Access 

Template is the decomposition of the Output of Process branch of the Process Template 

example (Figure 17). This branch indicates that the "Set Signal" processes need to be 

analyzed to determine if the "No Pause in Yellow When Light Commanded From 

Green to Red" event could be caused within these processes. The Example Access To 

Device Template (Figure 24) shows how a subsystem causing the "No Pause in 

Yellow" hazard is considered. 

Each "Set Signal" process has access to a traffic light since these processes 

control the changing of the traffic lights, so these processes are indicated in the first 
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Commanded 
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Figure 24.  Example Access To Device Template Use 

branch of the example. In the second branch of the example, the commands that these 

processes give to the traffic light must be analyzed to determine if it is possible for 

these processes to send commands that could cause, in this example, the light to not 

pause in yellow when changing from green to red. The third branch of the example 

indicates that the hazard-causing commands indicated by the second branch must 

actually be sent to the traffic light in order for the hazard to occur. 

H.     TIME RELATIONSHIP OF EVENTS 

The decomposition of the hazard event carries with it the implication of going 

back in time. As an event is decomposed, all the breakdowns that are the result of the 

decomposition have the requirement of occurring simultaneously with the hazard, or at 

some time prior to the occurrence of the hazard. SFTA must go backward in time 

from the occurrence of the hazard so that the system can be established in a normal 

safe operational state.  The implication of the fault tree being backed out all the way to 
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the initialization of the system without ending in a safe operational state is that the 

unsafe event is not prevented by the system. 

The Time Template (Figure 25) shows an event that is decomposed into an event 

that must occur first in order for the later event to occur.   This decomposition is based 

Event 1 Causes Hazard 

Event 2 Causes Event 1 

Figure 25.  Time Template 

upon the logical implication, "if A implies B and B implies C, then A implies C", and 

carries with it the relationship of the events with regard to time. In Figure 25, Event 1 

is the event that the fault tree indicates would cause the occurrence of the hazard. 

Event 2 is an event that causes Event 1 to occur. The link between the two events is 

that Event 2 must occur before Event 1. Although Event 2 by itself does not directly 

cause the hazard to occur, Event 2 must be considered due to its relationship with 

Event 1. Because Event 2 causes Event 1 to occur, Event 2 indirectly causes the 

occurrence of the hazard. 

An example of the use of the Time Template (Figure 26) can be found by 

modifying the requirements of the traffic light control system.   The modification is that 
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one of the roads leading to the intersection has a blind curve that must be driven 

through just prior to entering the intersection. On the curve prior to the intersection is 

a flashing yellow light that serves to warn motorists that an intersection with a traffic 

light lies ahead. 

Figure 26 shows how the Time Template can be used to decompose an event into 

a second event that precedes and causes the first event to occur.   The event that causes 

Cor Entering Intersection 

Agomst Red Light Causes 
•Perpmdicuiar Cars' Hazard 

Yellow Warning ugnt Failure 
Causes Car To Enter 

Intersection Against Red light 

Figure 26.   Example Time Template Use 

the "Perpendicular Cars" hazard is a car entering the intersection against a traffic light 

that is displaying a red signal. The event of entering the intersection against a red light 

could indirectly be caused by the flashing yellow warning light being inoperative. 

Without the warning to slow down on the blind curve prior to the intersection, the 

motorist does not have enough room to stop the vehicle, given reaction time and 

stopping distances for a car traveling at normal speed. Thus, the failure of the flashing 

yellow warning light indirectly causes the "Perpendicular Cars" hazard. 
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I.       INTERDEPENDENCE OF DECOMPOSITION DIMENSIONS 

The two decomposition dimensions, Specificity-of-Event and Subsystem-Size, are 

dependant on each other. Both are goals of the hazard decomposition. The specificity 

of an event can be made more specific as a means of aiding in the decomposition of a 

subsystem's size. In a similar manner, the decomposition of a subsystem's size serves 

as a means of making the targeted event more specific. As the Decomposition 

Dimensions in Figure 5 at the beginning of the chapter shows, the decomposition of a 

hazard occurs along two distinct dimensions, specificity of event and subsystem size. 

As the system is analyzed, either decomposition dimension can be used as a means of 

decomposing the hazard. The templates presented in this chapter form a framework 

from which it is possible to decompose the hazard along either of the two dimensions. 

As the hazard analysis proceeds, it may be advantageous to decompose the hazard or 

event with the intent of making the other decomposition dimension more useful. In 

other words, to advance the Subsystem-Size decomposition, the Specificity-of-Event 

decomposition dimension may be invoked specifically to help the analyst advance the 

Subsystem-Size decomposition. In the following chapter, the framework of 

decomposition dimensions and decomposition templates presented in this chapter are 

applied to a more complicated example. 
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in.   APPLICATION OF DECOMPOSITION TEMPLATES 

A.     ONE-LANE BRIDGE REQUIREMENTS MODEL 

In this chapter, the decomposition templates presented in Chapter II are applied to 

the requirements model of a software system developed by Ripps [Ref. 10:p. 32] in his 

work on the development of real time requirements. This software system is being 

designed to control the traffic flow on a one-lane bridge. As depicted by Figure 27, 

the one-lane bridge is shared by both lanes of a dual-lane road. The software system 

controls access to the bridge through the use of traffic lights, and is to keep traffic 

travelling across the bridge flowing smoothly in one direction or the other as 

appropriate. 

<= 
A Sensor 4 

Two-Lane Road 

vSensor 1 

=C> 
Light RB^ 

nC 
^Light LB 

One-Lane 

Bridge 

Sensor 3 A 

Two-Lane Road 

Sensor 2 v 

=> 

Figure 27.  Depiction of One-Lane Bridge 

The requirements model for the one-lane bridge appears in Appendix A as a set 

of rules that governs the software system controlling the bridge. Since this behavioral 

model is somewhat difficult to comprehend as a set of rules, a graphical representation 

of the one-lane bridge control system is provided in Appendix B. 
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B. ONE-LANE BRIDGE HAZARD 

For the purpose of presenting an application of the decomposition templates, the 

one-lane bridge control system is analyzed for the hazard "Two Cars Simultaneously on 

Bridge in Opposite Directions". Normally, the event at the root of a fault tree would 

be much more specific than this event, but for the purposes of illustration an event of 

this generality is used so as to demonstrate the various applications of the 

decomposition templates developed in Chapter n. The event "Two Cars 

Simultaneously on Bridge in Opposite Directions" is used as a starting point because it 

is an event that is unsafe for the motorists travelling across the bridge, and is an event 

that the software control system should not allow to occur. This hazard appears at the 

root of the resultant software fault tree, and is the initial event decomposed via the 

decomposition templates. It is noted that the decomposition process is not concerned 

with whether the hazard could occur for reasons beyond the control of the software, 

such as cars ignoring a red light and illegally entering the bridge. 

C. DECOMPOSITION OF ONE-LANE BRIDGE HAZARD 

1.     Specificity-of-Event Decomposition Dimension 

The Specificity of Event decomposition dimension is used to make the 

hazard event, "Two Cars Simultaneously on Bridge in Opposite Directions", more 

specific in terms of events and conditions associated with these events. Inspection of 

the hazard indicates that one way in which the hazard event could be decomposed is by 

using the AND (WHILE/WHEN) template (Figure 28). 

The AND (WHILE/WHEN) template is indicated because the hazard requires that 

an event occurs while a condition holds. The event is "Lights in Both Directions 

Green Simultaneously". The condition associated with this event is that "Two Cars 

Approach From Opposite Directions".   All subsequent decompositions under the event 
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side of the AND (WHILE/WHEN) template branch occur within the scope of this 

condition. 

Two Cirs Simultaneously On 
Bridge ill Opposite Directions 

Event Condition 

Lights In Both Directions 
Green Simultaneously 

/Two Cars Approach FtornN 
(     Opposite Oreclons     ) 

Figure 28.   Bridge Hazard Decomposition 

The decomposition of the event side of Figure 28 makes further use of the 

Specificity of Event decomposition dimension and is based upon the analyst's 

knowledge of the system. Inspection of the requirements model in Appendix B reveals 

that there are four separate system controlled events that could cause the event side of 

Figure 28, "Lights in Both Directions Green Simultaneously", to occur. Since these 

four events are independent of one another, they are decomposed from the event side of 

Figure 28 through the use of the OR template (Figure 29). Each of these four events 

are analyzed independently by the fault tree because any one alone could cause the 

event side of Figure 28 to contribute to the occurrence of the hazard. 

The events decomposed by Figure 29 come from the requirements model for 

the one-lane bridge (Appendix B). The analyst must determine the ways in which the 

event "Lights in Both Directions Green Simultaneously" from Figure 28 could occur 

within the scope of the system's control.    The requirements model's "Initialization" 
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Figure 29.   Decomposition of Bridge Hazard Event 

process and two light control processes indicate that the "Lights in Both Directions 

Green Simultaneously" event could occur by at least four events that are controllable 

by the system's software. 

The first event is "Lights Not Initialized Red". If the lights are not 

initialized red, then the possibility exists for the lights to initially come on green when 

the system starts to control the bridge. 

The second and third events consider the cases where one light is 

commanded to green while the other light already green. These two events are 

essentially the same event with the difference being which light is already green, and 

which light is being commanded to green by the software. Due to this reflexive 

condition, only the event "Right-Bound Light Commanded Green While Left-Bound 

Light Green" will be expanded.   The conditional nature of this event indicates that the 
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event "Right-Bound Light Commanded Green While Left-Bound Light Green" can be 

further decomposed using the AND (WHILE/WHEN) template. 

The fourth event considered that is controllable by the system software is 

"Software Commands Both Lights Green Simultaneously". This event delves into 

whether or not the system is capable of turning the traffic lights in both directions 

green at the same time. 

As shown in Figure 29, the event "Right-Bound Light Commanded Green 

While Left-Bound Light Green" is decomposed into the event "Right-Bound Light 

Commanded Green" and the condition "Left-Bound Light Green" through the 

application use of another AND (WHILE/WHEN) template. This decomposition step is 

necessary to distinguish the event being considered for further decomposition by the 

fault tree from the condition whose scope will cover all subsequent decompositions of 

the associated event. 

Cases such as one or both lights being stuck in the green position are 

hardware related and are not considered by this particular fault tree application. The 

analyst may elect to include hardware events as a means of branching into hardware 

fault tree analysis in a manner similar to that presented by Leveson [Ref. 5:p. 570]. If 

this were the case, then the inclusion of hardware controlled events such as lights being 

stuck green would be appropriate in this decomposition step. 

2.     Subsystem-Size Decomposition Dimension 

Up until this point, the decomposition process has used the Specificity-of- 

Event decomposition dimension for decomposing the hazard. Further decomposition of 

the event branches of Figure 29 with regard to the Specificity-of-Event dimension do 

not readily follow, suggesting that the Subsystem-Size decomposition dimension should 

be considered.    To illustrate the Subsystem-Size decomposition dimension, the event 
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branches of Figure 29 are further decomposed using Subsystem decomposition 

templates. 

The Subsystem template allows the current subsystem to be broken down 

into subsystems of smaller scope that are more directly applicable to the occurrence of 

the hazard. These decomposition steps are driven by the events that are being 

decomposed and start with the entire system being considered as the root of the 

Subsystem template. Each event from the branches of Figure 29 decomposes in this 

case the entire system into the subsystem that plays a role in each particular events 

occurrence. 

The event "Lights Not Initialized Red" from Figure 29 indicates that the 

further decomposition of this event requires the system to be broken down into the 

subsystem that controls the initialization of the lights, in this case the "Initialize 

System" process (Figure 30). This decomposition step makes use of the process branch 

of the Subsystem template, indicating that it is the input-process-output of the 

"Initialize System" process that should be next analyzed to determine whether the lights 

are initialized red by the system. Neither the Communication branch nor the Access 

branch of the Subsystem Template are indicated as avenues for further decomposition 

because the requirements model in Appendix A presents "Initialize System" as a 

process that does not communicate with other processes and does not have access to 

any device or database. Therefore, the Communication and Access branches are both 

represented by a diamond indicating that there is no further decomposition along these 

avenues. 

The application of the Process template to the process branch of Figure 30 

is represented by Figure 31. The process "Initialize System" is decomposed with 

regard to the event "Lights Not Initialized Red" carried through from the subsystem 

decomposition in Figure 30.   The Process template gives a structure for analyzing the 
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ADove Event 

Figure 30.   Process Subsystem Decomposition 

process contained within "Initialize System". Figure 31 shows that the input to the 

process, the output from the process, and the constructs internal to the process must all 

be analyzed to determine if one or more of these parts of the "Initialize System" 

process could allow the "Lights Not Initialized Red" event to occur. 

The event "Right-Bound Light Commanded Green" from Figure 29 indicates 

that the access that the system has to the right-bound light should be checked for this 

event. By analyzing the graphical representation of the one-lane bridge requirements 

model in Appendix B, it is apparent that the part of the system that has access to the 

right-bound light is the "Control RB Light" process. Figure 32 indicates that the access 

of the "Control RB Light" process to the right-bound light should next be analyzed to 

determine whether the right-bound light can be commanded green while the condition 

of the left-bound light already being green holds. Neither the Process branch nor the 

Communication branch of the Subsystem template are indicated for further 

decomposition, so both of these branches are represented as diamonds in Figure 32. 
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Figure 31.   Process Template 
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Figure 32.  Access Subsystem Decomposition 
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The application of the Access template to the access branch Figure 32 is 

represented by Figure 33. The process "Control RB Light" is decomposed with regard 

to the event "Right-Bound Light Commanded Green" carried through from the 

subsystem decomposition in Figure 32. The Access template gives a structure for 

analyzing the access that the process "Control RB Light" has to the right-bound light of 

the one-lane bridge. 

Access That 'Control RB Light' Process Has 
To Rignt-Bouno Lignt Device Causes Event 

'RKjnt-Bouna Light commanaea Green' 

'Control RB Light- 
Has Access To 

Right-Bound 
Light Device 

Command From 
Control RB Light- 

To Rignt-Bouna 

Light Causes 
Above Event 

'Control RB Light' 
Sends Command 
Causing ADove 

Event To 

Right-Bound 
Light Device 

Figure 33.   Access Template 

The template in Figure 33 shows the three cases that must hold, and 

therefore be analyzed by the fault tree, in order for the "Control RB Light" process to 

cause the event "Right-Bound Light Commanded Green". The first case is that 

"Control RB Light" must have access to the Right-Bound light on the bridge. The 

second case is that "Control RB Light" must be capable of sending one or more 

commands to the Right-Bound light that would result in the event "Right-Bound Light 

Commanded Green". The third case is that "Control RB Light" must actually send the 

commands specified in the second case to the Right-Bound light. 
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The decomposition of the event "Software Commands Both Lights Green 

Simultaneously" from Figure 29 requires knowledge of how the system allows each 

light to be commanded green. Requirements model rules 1 and 5 from the 

requirements model in Appendix A require each light control process to wait until 

exclusive access to the bridge is granted before turning the controlled light green. This 

requirement of waiting for exclusive access indicates that the system should be broken 

down into the subsystems that communicate through whatever process controls the 

exclusive access to the bridge (Figure 34). 

Decompose Entire Bridge Control System 
Based Upon Event 'Software Commands 

Both ngnts Green Simultaneously' 

Process 

Communication Between 
RB Exclusive Access 

And 
LB Exclusive Access 
Causes Aoove Event 

Access 

Figure 34.   Communication Subsystem Decomposition 

The requirements model identifies two processes that control the access to 

the bridge through a rendezvous type operation. These two processes are the "RB Wait 

For Exclusive Access To Bridge" process and the "LB Wait For Exclusive Access To 

Bridge" process. For illustration purposes these two processes will be referred to as 

"RB Exclusive Access" and "LB Exclusive Access" respectively. The application of 

the Communication template to the Communication branch of Figure 34 is represented 
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by Figure 35. The two processes, "RB Exclusive Access" and "LB Exclusive Access", 

that control the access to the bridge through a rendezvous type operation are 

decomposed with regard to the event "Software Commands Both Lights Green 

Simultaneously" carried through from the subsystem decomposition in Figure 34. The 

Communication template gives a structure for analyzing the rendezvous type operation 

which is the way the two exclusive access processes are assumed to communicate. At 

this point, neither the Process branch nor the Access branch of the Subsystem template 

are indicated for further decomposition. These branches are therefore both represented 

by diamonds in Figure 34. 

Communication Between RB Exclusive Access 
And LB Exclusive Access Processes Causes 

Event "Software Commands Both Lights 
Green Simultaneously" To Occur 

Rendezvous 
Between 

RB Exclusive Access 
And 

LB Exclusive Access 
Causes Event To Occur 

Figure 35.   Communication Template 

As Figure 35 indicates, the rendezvous between the two exclusive access 

processes must be evaluated. The effect of a rendezvous is to create a new process. 

This new process is entirely made up of the interaction that goes on between the two 

exclusive access processes when the rendezvous type operation is accomplished, and is 

in fact the single process that actually controls exclusive access to the bridge.   This 
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new process must be analyzed to determine if it could cause the event "Software 

Commands Both Lights Green Simultaneously". The next step of the analysis, as 

indicated by the Communication template, is to analyze the new process using a 

Process Template. Based upon the assumption that the two exclusive access processes 

communicate via a rendezvous type operation, the Communication via Shared Memory 

and Communication via Exchange of Data branches of the Communication template are 

not pursued. These two branches are therefore each represented by a diamond in the 

Communication Template of Figure 35. 

3.     Overall Fault Tree for Bridge Hazard 

Figure 36 shows the entire software fault tree that results from the 

application of decomposition templates to the one-lane bridge hazard. The 

decomposition process using the decomposition templates developed in Chapter II 

continues until the point at which the specific system modules, events and associated 

conditions are indicated is sufficient detail. At this point, if the software system has 

been developed down to the code level, the software fault tree analysis can be 

continued through the application of Cha statement templates. If the software system is 

has not yet been developed to the code level, the modules, events and conditions 

indicated by the software fault tree can be used to provide specific input regarding 

what the detailed design of the indicated modules should be concerned with. 

D.      SUMMARY OF DECOMPOSITION TEMPLATE APPLICATION 

Hazard decomposition using the decomposition templates presented in this thesis 

continues until a contradiction is reached, or a specific process within the software 

system is indicated. Where a specific process is indicated, the decomposition of the 

hazard continues with the use of statement templates. The use of statement templates 

is supported by the structure of the fault tree resulting from the application of the 
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Figure 36.  Overall Fault Tree for Bridge Hazard 
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decomposition templates. The fault tree up to this point contains the conditions that 

must hold and the events that must occur in order for the system to arrive in the unsafe 

state of the hazard. With the fault tree indicating a specific process or subsystem, the 

use of statement templates can be better focused. The statement templates now have 

the advantage of starting off pointing to the specific process to be analyzed, with both 

the events and associated conditions known. 
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IV.   CONCLUSIONS AND RECOMMENDATIONS 

A.     CONCLUSIONS 

The purpose of this thesis is to develop a formalized method of decomposing 

system-level hazards. The decomposition templates presented herein provide the 

software fault tree analyst with a framework for decomposing a hazard to the point at 

which line by line code analysis can be conducted with existing statement templates. 

This framework serves as a formal method for conducting the decomposition of system- 

level hazards, and ensures that as many as possible of the applicable decomposition 

aspects are considered. The decomposition of system-level hazards had previously been 

conducted in a largely human intensive manner, carrying both the drawback of 

introducing human error in the form of oversight as well as the strength of human 

insight. The application of the decomposition templates developed in this thesis serves 

to reduce the former and enhance the later. 

1.     Relevance to MIL-STD-882B 

Task 202 of MIL-STD-882B [Ref. ll:p. 202-1] provides guidelines for the 

identification of safety critical areas and the evaluation of hazards. The hazards 

identified here include the potential contribution of software events to system/subsystem 

mishaps. These software events include software commands and responses such as 

inadvertent commands, failure to command, and untimely commands and responses. 

The decomposition templates developed within the Specificity-of-Event Decomposition 

Dimension of Chapter II can be used to determine the software events that can 

contribute to system mishaps. The events identified by the decomposition templates 

can then be incorporated into the safety design criteria of the software specifications. 
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Task 203 of MIL-STD-882B [Ref. ll:p. 203-1] provides guidelines for the 

identification of hazards associated with the design of subsystems. The hazards 

identified here include the potential contribution of software events and faults with 

regard to the safety of a subsystem. The subsystem decomposition templates developed 

within the Subsystem-Size Decomposition Dimension of Chapter II can serve as an 

analysis technique for performing Task 203's Subsystem Hazard Analysis with regard to 

the software of a system, and can be used to determine whether the safety design 

criteria in the software specification have been satisfied. 

2.     Advantages of Decomposition Templates 

The advantages of using the decomposition templates presented in this thesis 

to decompose system-level hazards stem from the formalized standpoint from which the 

templates were developed. The decomposition templates give the software fault tree 

analyst a structured viewpoint from which to evaluate the software system. The fault 

tree analyst can shift between the two interdependent decomposition dimensions as 

necessary, focusing on either increasing the specificity of the event being considered, or 

reducing the scope of the subsystem associated with the event. Shifting from one 

decomposition dimension to another essentially allows the decomposition process to 

shift the perspective from which the software system is being considered. The 

templates serve to aid the analyst by providing a step by step framework with which to 

approach each subsequent decomposition of the system-level hazard. As indicated in 

Chapter III, this decomposition process can be continued until the point at which 

statement templates can be used. The structure of the software fault tree provides the 

analyst with information that focuses the application of statement templates. The 

application of statement templates yields information of sufficient detail so as to allow 

the analyst to make use of the Ada exception handling mechanism as a method of 

pruning the developing fault tree.   Pruning a fault tree in this manner is analogous to 
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Leveson and Harvey's method of inserting run-time checks into the code to trap a 

developing unsafe state [Ref. 4:p. 576]. Each decomposition step provides specific 

events and/or conditions that are to be further evaluated, as well as the specific 

subsystem within which to evaluate these events and conditions. Applying the 

decomposition templates presented in this thesis effectively yields pointers to specific 

modules within the overall software system, along with information such as events and 

conditions that the module needs to be evaluated for. The effect of the use of hazard 

decomposition templates is to give the application of statement templates a specific 

starting point, as well as a specific hazard to be analyzed by the statement templates. 

3.     Limitations of Decomposition Templates 

The application of decomposition templates does not relieve the analyst from 

the need for a through understanding of the software system. In order for the 

Subsystem-Size Decomposition Dimension to be effective, the analyst must be 

thoroughly familiar with the communication links and interfaces through which the 

software system will function. The reliance of this decomposition dimension on the 

communication between modules implies that, at a minimum, a high-level design of the 

software system to be analyzed is needed in order for this decomposition dimension to 

be effective. This requirement obviously limits the effectiveness of this dimension if 

application when applied to solely the requirements specification of a system. 

The effectiveness of the Specificity-of-Event Decomposition Dimension is 

also reliant on the analyst's knowledge of the software system. The focus of this 

decomposition dimension centers around itemizing each event that could cause the 

given hazard in the current subsystem. For the fault tree to fully reflect all the possible 

paths in which the hazard could occur, the scope of the decomposition must constitute 

a complete enumeration of the ways in which the hazard could occur within the current 

subsystem.    In other words, the events resulting from any decomposition step must 
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represent in total the ways in which the hazard could occur at that level. A problem 

arises in how confident the analyst is that every resultant event has been properly 

reflected in the decomposition. Specifically, the analyst must know when every event 

that could result from the decomposition of the hazard within the current subsystem has 

been considered. For the Specificity-of-Event Decomposition Dimension to be 

effective, it is clear that a through knowledge of how the software system functions is 

required. 

B.      RECOMMENDATIONS FOR FURTHER RESEARCH 

Several topics related to this thesis warrant further research. First, research is 

needed to determine how the process of decomposing a system-level hazard can be 

automated. Even with the software fault tree limited to the analysis of safety critical 

events, the fault tree of a moderately sized system will be substantial. Although aided 

by the decomposition template framework, the development of any fault tree is labor 

intensive. The reliance of the Subsystem-Size Decomposition Dimension on the 

communication links and interfaces of a system suggests that, given a high-level design, 

automation of this decomposition dimension may be possible. 

Second, the issue of integrating formal requirements into a safety analysis should 

be investigated. The ability of the Specificity-of-Event Decomposition Dimension to be 

applied to the requirements of a system indicates that this decomposition dimension can 

be an effective method of analyzing the requirements of a system from a safety 

standpoint. 

A third area recommended for research is the possibility of transferring the 

logical basis of the templates into a formal logic. A formal logic would enable the 

analyst to give proof conditions that could be used to formally prove whether the 

system could arrive in a state in which a specific hazard has occurred. 
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APPENDIX A.  REQUIREMENTS MODEL RULES FOR ONE-LANE BRIDGE 

Rule 1 : If in right-bound state Trafficjdle and a right-bound car approaches the 
bridge (as detected by sensor 1), then set RB_Cars to 1, request 
Access_to_Bridge, and enter right-bound state Wait_for_Exclusive_Access 
to_Bridge. When exclusive access is granted, enter right-bound state 
Traffic_Active and rum light RB green. 

Rule 2 : If in right-bound state Traffic_Active and a right-bound car leaves the bridge 
(as detected by sensor 2) and RB_Cars is not 1, then decrement RB_Cars by 
1. 

Rule 3 :    If in right-bound state Traffic_Active and a right-bound car leaves the bridge 
(as detected by sensor 2) and RB_Cars is not 1, then decrement RB_Cars 
by 1. 

Rule 4 : If in right-bound state Traffic_Active and a right-bound car leaves the bridge 
and RB_Cars is 1, then turn light RB red, set RB_Cars to 0, release 
Access_to_Bridge, and enter right-bound state Traffic_Idle. 

Rule 5 : If in left-bound state Trafficjdle and a left-bound car approaches the bridge 
(as detected by sensor 3), then set LB_Cars to 1, request Access_to_Bridge, 
and enter left-bound state Wait_for_Exclusive_Access_to_Bridge. When 
exclusive access is granted, enter left-bound state Traffic_Active and turn 
light LB green. 

Rule 6 : If in right-bound state Traffic_Active and a right-bound car leaves the bridge 
(as detected by sensor 2) and RB_Cars is not 1, then decrement RB_Cars by 
1. 

Rule 7 :    If in left-bound state Traffic_Active and a left-bound car leaves the bridge 
(as detected by sensor 4) and LB_Cars is not 1, then decrement LB_Cars 
by 1. 

Rule 8 : If in left-bound state Traffic_Active and a left-bound car leaves the bridge 
and LB_Cars is 1, then turn light LB red, set LB_Cars to 0, release 
Access_to_Bridge, and enter left-bound state Trafficjdle. 
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APPENDIX B.   GRAPHICAL REPRESENTATION OF ONE-LANE BRIDGE 
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I Figure 3-21 
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LB Cars = LB Cars - 1 

FIGURE 3-3:  Graphical Representation of Behavioral Requirements: 
State Transition Diagrams 
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